Hydrogen Evolving Systems. 3. Further Observations on the Reduction of Molecular Nitrogen and of Other Substrates in the $V(OH)_2-Mg(OH)_2$ System

Stacey I. Zones, Miles R. Palmer, John G. Palmer, John M. Doemeny, and Gerhard N. Schrauzer*

Contribution from the Department of Chemistry. University of California at San Diego, Revelle College, La Jolla. California 92093. Received July 18, 1977

Abstract: In the $V(OH)_2-Mg(OH)_2$ nitrogen fixing system, originally described by Shilov and co-workers, N₂ is reduced to diimide, N₂H₂. The Mg(OH)₂ host lattice provides an environment in which N₂H₂ can accumulate without suffering rapid basecatalyzed decomposition into the elements. Owing to the lower effective alkalinity inside the Mg(OH)₂ lattice, N₂H₂ can *disproportionate* instead to N₂ and N₂H₄. If "V(OH)₂-Mg(OH)₂" gels are precipitated from solutions containing 5-20% CH₃OH, higher yields of N₂H₄ are observed presumably because the aging of the hydroxide gels is retarded and/or the V²⁺ sites become more accessible to diffusing N₂. Such gels possess the properties of *molecular sieves* inasmuch as N₂ reduction is inhibited significantly only by C₂H₆ or C₃H₈, but not by CH₄ or C₄- or longer chain hydrocarbons. Several new experiments are described which reaffirm the diimide mechanism of N₂ reduction, including inhibition studies by CO and CN⁻. V(OH)₂ behaves as a two-electron reductant even with diazirine, diazomethane, butadiene, and substituted or unsubstituted alkynes. The stereochemistry of C₂H₂ reduction is shown to be cis. Alkyl halides are reductively dehalogenated to yield unrearranged alkanes.

In part 2 of this series¹ we reported that aqueous suspensions of $V(OH)_2$ in inert host lattices such as $Mg(OH)_2$ or ZrO_2 ·aq reduce molecular nitrogen to hydrazine via diimide (diazene), N_2H_2 , as the intermediate (Scheme I).

The V(OH)₂-Mg(OH)₂ nitrogen fixing system, originally discovered by Shilov et al.,² has remained mechanistically obscure as N₂ was assumed³ to be reduced *directly* to N₂H₄, and arguments were presented which seemed to render diimide an unlikely intermediate on theoretical grounds.^{4,5}

However, our work¹ showed that $V(OH)_2$ reduces N_2 to N_2H_2 , which itself is not reduced and either disproportionates or decomposes as outlined in Scheme I. Since this mechanism of N_2 reduction is very similar to that in the molybdenumbased model systems of nitrogenase,⁶ an independent system for the study of the reduction of N_2 via N_2H_2 became available as a means of testing our nitrogenase mechanism. However, the $V(OH)_2$ -Mg(OH)₂ N_2 -fixing system is also of interest in its own right and still poses numerous intriguing questions. Does $V(OH)_2$ behave as a two-electron reductant also with respect to substrates that could accept more than two electrons? Are there other means to demonstrate the intermediacy of diimide? What is the role of the Mg(OH)₂ host lattice? Are there alternative interpretations? We shall address ourselves to these and other questions in the following.

Results

Reactions of $V(OH)_2$ -Mg(OH)₂ with Substrates Other Than N₂. Our previous work has indicated that $V(OH)_2$ acts as a

two-electron reductant even with substrates that could in principle accept more electrons. At high concentrations, C_2H_2 is reduced to C_2H_4 , and V^{2+} is oxidized to V^{4+} virtually quantitatively, in accord with the proposed two-electron reduction mechanism. Side-on interaction of C_2H_2 with V^{2+} was considered probable in view of the observed reduction of 2butyne to *cis*-2-butene.¹ By conducting the reduction of C_2H_2 in D₂O, we have since proved the cis stereochemistry of C_2H_2 reduction as well (see Experimental Section). At low concentrations of C_2H_2 , a mixture of C_2H_4 and C_2H_6 is formed due to the secondary reduction of product C_2H_4 , which is also a substrate in the V(OH)₂-Mg(OH)₂ system.¹ Our work thus does not support the view according to which substrates are reduced by one-electron transfer steps involving aggregates of four V²⁺ ions^{3.4} or pairs of V₂²⁺ ions.⁷

Employing butadiene-1,3 as the substrate, we have found that it is reduced exclusively to butene-1; neither n-butane nor butenes-2 formed under the conditions of N_2 reduction, indicating that the two-electron reduction product is favored and that no isomerization occurs (see Table I). We subsequently became interested in the reactions of $V(OH)_2$ with various alkylating agents. With simple alkyl halides, alkanes are formed by way of reductive dehalogenation; these reactions occur without the formation of new C-C bonds. Hydrocarbons that could have arisen from the coupling of two alkyl radicals were not observed. Approximate relative rates of alkane production from various alkyl halides are given in Table I together with the results of experiments with other substrates. Scheme II summarizes the most important reactions observed. It may be seen that diazirine is reduced to diaziridine just as dimethyldiazene is reduced to s-dimethylhydrazine. On heating, further reduction of diaziridine to formaldehyde and ammonia was observed, while s-dimethylhydrazine is reduced to methylamine. Diazomethane reacts with $V(OH)_2-Mg(OH)_2$ rapidly to yield N_2 and ch_4 . Carbon monoxide is not reduced and acts as an inhibitor of the reduction of N_2 and of other

0002-7863/78/1500-2113\$01.00/0

© 1978 American Chemical Society

Figure 1. Yields of N_2H_4 from experiments in which $V(OH)_2$ -Mg(OH)₂ gels were generated under argon and brought into contact with N_2 at 1 atm after the times indicated. Suspensions consisted of 40 μ mol of $V(OH)_2$ and 2000 μ mol of Mg(OH)₂ in a total solution volume of 11 mL.

Scheme II. Some Reactions in the V(OH)₂-Mg(OH)₂ System

substrates as will be described below. Carbon monoxide also was found to stimulate H_2 production. A similar effect was observed with CN^- , which is itself slowly reduced to CH_2 =O and NH_3 .

Reduction of Nitrogen. A key feature of the reactions of N2 with $V(OH)_2$ is that appreciable amounts of N_2H_4 are only formed if the $V(OH)_2$ is incorporated into inert host lattices such as $Mg(OH)_2$ or $ZrO_2 \cdot aq$. Although N_2 is also reduced by suspensions of $V(OH)_2$ as such, only traces of N_2H_4 are formed while H₂ production is noticeably stimulated. This remarkable phenomenon was attributed to the intermediate formation and subsequent base-catalyzed decomposition of N₂H₂ into the elements.¹ It is obviously necessary to incorporate the V^{2+} ions into the Mg(OH)₂ lattice in order to provide a protecting environment for the N_2H_2 . Since the $Mg(OH)_2$ lattice has only a finite capacity to hold N_2H_2 within the confinements of its polymeric layer structure it is not surprising that the yields of N_2H_4 depend critically on the V^{2+} : Mg^{2+} ratio, the N_2 pressure, and details of the manner in which the $V(OH)_2$ -Mg(OH)₂ gels are generated. Since the reaction system is heterogeneous and involves a sparingly soluble gaseous substrate, even the surface area of gel which is allowed to come into contact with N_2 has an effect on the yields of N₂H₄. Accordingly, all experiments must be performed under strictly identical conditions if they are to be

Table I. Reactions of $V(OH)_2$ -Mg(OH)₂ with Various Substrates^{*a*}

Substrate	Product(s)	Rel rate ^b	Ref	
N_2	$(N_2H_2), N_2H_4, (H_2)$	100	1	
C_2H_2	C_2H_4	73	1	
C_2H_4	C_2H_6	12.5	This work	
C ₃ H ₆	C_3H_8	2.8	This work	
$1,3-C_4H_6$	$1-C_4H_6$	1.5	This work	
H ₂ O	H ₂	0.3	This work	
CH ₃ Cl	CH₄	0.7	This work	
C_2H_5Cl	C_2H_6	0.9	This work	
n-C ₃ H ₇ Cl	C_3H_8	0.33	This work	
i-C ₃ H ₇ Cl	C_3H_8	0.09	This work	
n-C4H9Cl	C_4H_{10}	0.6	This work	
2-C ₄ H ₉ Cl	C_4H_{10}	0.03	This work	
t-C4H9Cl	C_4H_{10}	~0.01	This work	
$C_5H_{11}Cl$	C_5H_{12} (neopentane)	~0.05	This work	
(neopentyl)				
C ₃ H ₇ Br	C ₃ H ₈	1.0	This work	
C ₃ H ₇ I	C_3H_8	5.0	This work	
CH_2N_2	CH_4, N_2	N.D.	This work	
CH ₃ N=NCH ₃	CH ₃ NHNHCH ₃ . CH ₃ NH ₂	N.D.	This work	
CH ₂ N ₂ (diazirine)	$CH_2N_2H_2$ (diaziridine)		This work	
	$CH_{a} = 0.2 NH_{a}$	ND	This work	
<u>CN-</u>	$CH_2=0, NH_3$	Slow	This work	

 a Under standard reaction conditions outlined in the Experimental Section, at 25 °C. b Approximate values, based on initial rates of N_2 reduction at 1 atm.

compared with each other, which includes the use of reaction vessels of identical shape and capacity. The reaction is furthermore kinetically complex because of aging phenomena of the V(OH)₂-Mg(OH)₂ gels which influence the rates of diffusion of gaseous substrates. Figure 1 shows the results of experiments in which V(OH)₂-Mg(OH)₂ gels were generated under argon and substrate N₂ was introduced at later time points. It may be seen that the yields of N₂H₄ decline to about one-half of the original amount within 20 min, a fact which we attribute to aging phenomena. However, these experiments also demonstrate that N₂ genuinely diffuses through the Mg(OH)₂ host lattice, which is remarkable considering the very high concentration of alkali (6 N KOH !) used to generate the gels.

The highest yields of N_2H_4 are observed if the V(OH)₂- $Mg(OH)_2$ gels are generated not in aqueous KOH, but instead in the presence of 5-20% of an alcohol, usually CH₃OH. Higher monohydric alcohols still increase the yields of N_2H_4 relative to runs in purely aqueous medium but are as a rule less effective than CH₃OH.⁸ The stimulatory effects of alcohols on product yields are also observed with C_2H_2 as the substrate (Figure 2, Table II). Interesting structure-related effects were noted upon addition of polyhydric alcohols. With propanediol-2,3, the reactivity of the gels was high with respect to both N_2 and C_2H_2 ; it was very low with propanediol-1,3, however (Table II). In view of these observations the number of additives studied was increased to include ethylenediamine, propylenediamine, ethanolamine, and other compounds, including two detergents (Triton and SDS). The effects of ethanolamine were investigated in greater detail and are presented in Figures 3 and 4. Ethanolamine causes an increase of the yields of N_2H_4 and diminution of H₂ production, for reasons to be discussed below.

Inhibition of N₂ Reduction by, CO, CN_2^- and C_2H_2 . Carbon monoxide was previously⁹ described as a weak inhibitor of N₂ reduction in the V(OH)₂-Mg(OH)₂ system but was found under our reaction conditions to inhibit N₂H₄ production quite significantly and with concomitant *stimulation* of H₂

	Amount	N_2 redn			C_2H_2 redn (yields umol)	
Additive	added	$\frac{(\text{yletus},}{N_2H_4}$	H ₂	N_2H_4/H_2	C_2H_4	
None		0.45	0.22	2.05	10.9	
CH₃OH	18% vol	1.15	0.50	2.3	24.7	
C ₂ H ₅ OH	18% vol	1.05	0.25	4.2	25.0	
n-C ₃ H ₇ OH	18% vol	0.72	0.22	3.3	25.4	
n-C ₄ H ₉ OH	18% vol	0.64	0.22	2.9	26.4	
i-C ₄ H ₉ OH	18% vol	0.51	0.44	1.2	23.8	
t-C ₄ H ₉ OH	18% vol	1.04	0.35	3.0	27.0	
c-C ₆ H ₁₁ OH	18% vol	0.01	0.01	1.0	1.4	
HOCH ₂ CH ₂ OH	18% vol	0.74	0.25	3.0	22.4	
HOCH(CH ₃)CH ₂ OH	18% vol	0.87	0.40	2.2	24.6	
HO(CH ₂) ₃ OH	18% vol	0.03	0.07	0.43	11.8	
HO(CH ₂) ₄ OH	18% vol	0.09	0.26	0.35	14.2	
HOCH ₂ CH(OH)CH ₂ OH	18% vol	0.04	0.15	0.27	13.5	
C ₆ H ₅ OH	1.2% wt	0.62	0.44	1.36	16.9	
$1,2-C_6H_4(OH)_2$	6.0% wt	0.03	0.03	1.00	14.1	
Triton X-100	∼0.6 mmol	0.10	0.03	3.3	22.7	
SDS	0.6 mmol	0.85	0.25	3.4	22.7	
HOCH ₂ CH ₂ NH ^b	0.2 mmol	1.86	0.40	4.7	24.5	
H ₂ NCH ₂ CH ₂ NH ^b	0.2 mmol	1.82	0.40	4.5	24.5	
$H_2N(CH_2)_3NH_2^b$	0.2 mmol	1.84	0.33	5.6	24.5	

^a Yields measured after 20 min. The V(OH)₂-Mg(OH)₂ gels were generated from 40 μ mol of V²⁺ (aq) and 2000 μ mol of Mg²⁺, respectively: all additives were added to the reaction mixture before gel formation except where indicated. ^b Added 60 s after gels had been generated.

Figure 2. Time dependence of N_2 reduction by suspensions of $V(OH)_2$ -Mg(OH)₂ generated in the absence and presence of 18 vol % of CH₃OH. Gels contained 40 μ mol of $V(OH)_2$ in 2000 μ mol of Mg(OH)₂: reaction temperature 25 °C.

formation. The evolution of H_2 reached a maximum rate at CO pressures of about 0.2 atm and declined at higher pressures. However, it is still quite rapid at 1 atm (see Figure 5). Added CN^- (after the hydroxide gel had been generated, to avoid formation of soluble cyano complexes of vanadium!) also lowered the yields of N_2H_4 and stimulated H_2 production. With C_2H_2 , N_2 reduction was inhibited without a stimulation

Figure 3. Effect of ethanolamine on the yields of N_2H_4 and H_2 in the reduction of N_2 at 1 atm of pressure. Increasing amounts of ethanolamine were added 60 s after precipitation of the gels; yields of products were measured after 20 min of reaction at 25 °C.

of H_2 formation; C_2H_2 is rapidly reduced under these conditions.

Inhibition of N_2 - and C_2H_2 Reduction by Alkanes and H_2 . The use of *alkanes* as inhibitors of substrate reduction in the

Figure 4. Effect of the addition of $50 \ \mu mol$ of ethanolamine to reacting suspensions of $V(OH)_2$ -Mg(OH)₂ under 1 atm of N₂ as a function of time. Overall yields measured after 20 min of reaction at 25 °C.

Figure 5. Effect of increasing concentrations of CO in the gas phase on the yields of N_2H_4 and H_2 in N_2 -fixation experiments at 1 atm and 25 °C. The V(OH)₂-Mg(OH)₂ gels were generated from 40 μ mol of V²⁺ (aq) and 2000 μ mol of Mg²⁺ in H₂O containing 18 vol % of CH₃OH.

 $V(OH)_2$ -Mg(OH)_2 system was contemplated in order to obtain information on factors which influence the diffusion of N_2 through the Mg(OH)₂ lattice. Figure 6 shows that the reduction of N_2 to N_2H_4 is inhibited significantly by C_2H_6 and C_3H_8 but only weakly by CH_4 , $n-C_4H_{10}$, and higher *n*-alkanes. In the course of these experiments the evolution of H2 was monitored as well; the observed yields are included in Figure 6. It may be seen that C_2H_6 inhibits N_2 reduction but stimulates the evolution of H_2 . The effect on the H_2 evolution is N_2 dependent and not observed under argon or C_2H_2 . On the other hand, C₃H₈ inhibits both N₂ reduction and H₂ formation. The reduction of C₂H₂ is also inhibited by small hydrocarbons; among simple alkanes tested, C2H6 was the most potent inhibitor (Figure 7). Since H_2 is a competitive inhibitor of N_2 reduction by nitrogenase we also explored its effect on N₂ reduction in the present system. Only a 20% diminution of the yield of N_2H_4 was observed when the reduction of N_2 at 1 atm of pressure was performed in the presence of 0.5 atm of H_2 .

Figure 6. Effects of alkanes on the yields of N_2H_4 and H_2 in N_2 -fixation experiments at $p_{N_2} = 1$ atm. All hydrocarbons were present at 0.3 atm in the gas phase or the equivalent liquid volumes at t = 0. Yields were determined after 20 min of reaction at 25 °C.

Figure 7. Effects of alkanes on the yields of C_2H_4 and C_2H_2 on reduction with $V(OH)_2$ -Mg(OH)₂. Reaction conditions as outlined in legend of Figure 6.

Deuterium Isotope Effects. The evolution of D_2 from suspensions of $V(OD)_2-Mg(OD)_2$ in alkaline D_2O occurs at approximately $\frac{1}{3}$ of the rate of the corresponding reaction in H_2O . However, neither the reduction of C_2H_2 nor of C_2H_4 or C_3H_6 shows a similarly large kinetic H-D effect. Although the rates of product formation are diminished in D_2O relative to H_2O , the H-D effect is small and somewhat erratic, particularly in early phases of the reaction, suggesting that differences in the rates of aging of the gels in H_2O and D_2O are responsible and will hence not be described in detail. The reduction of N_2 to N_2H_4 occurs at a slightly faster initial rate than the reduction of N_2 to N_2D_4 , but the terminal yields are almost identical. However, 1.5 times more H_2 and D_2 is formed, as follows from Table III.

Dependence of H₂ and N₂H₄ Yields on N₂ Pressure. The rates of H₂ evolution from V(OH)₂-Mg(OH)₂ suspensions are dependent on the partial pressure of N₂ and the concentration of V²⁺ in the gels. At concentrations of 10 μ mol of V²⁺ per

Table III. Product Yields and Ratios from the Reduction of N₂ in H₂O and D₂O^a

Reaction	$H_2(D_2),$	N_2H_4 (N_2D_4),			Reducing equiv consumed		
time, s	μmol	H_2/D_2	μmol	N_2H_4/N_2D_4	μ mol H ₂ O (D ₂ O)	Ratio	
28	0.38 (0.24)	1.58	0.50 (0.42)	1,19	2.76 (2.16)	1.28	
38	0.43 (0.26)	1.65	0.69 (0.56)	1.23	3.62 (2.74)	1.32	
53	0.46 (0.28)	1.64	0.82 (0.84)	0.98	4.20 (3.92)	1.07	
75	0.48 (0.32)	1.50	0.94 (0.99)	0.95	4.72 (4.60)	1.02	
1200	0.70 (0.50)	1.40	1.00 (1.06)	0.94	5.40 (5.24)	1.03	

^a From gels containing 40 µmol of V²⁺ per 2000 µmol of Mg(OH)₂ or Mg(OD)₂, respectively.

Table IV. Observed H_2/N_2H_4 Ratios at 1 atm of N_2 as a Function of the V^{2+} Concentration in the $Mg(OH)_2$ Gels

	V^{2+} concn, μ mol ^a			
	10	20	30	40
H ₂ /N ₂ H ₄ ratios after 45 min of reaction	2.5	1.15	0.56	0.403

^a In 2000 µmol of Mg(OH)₂.

2000 μ mol of Mg(OH)₂, more H₂ than N₂H₄ is formed even at 1 atm of N₂; as the V²⁺ concentration is increased, the H₂/N₂H₄ ratios begin to reflect the decline in H₂ and the increase in N₂H₄ production (Table IV).

The dependence of the rates of H_2 production on the partial pressure of nitrogen is nonlinear; the rates reach a maximum at intermediate N_2 pressures which shifts as a function of time. This is shown in Figure 8 for the V²⁺ concentration of 40 mol per 2000 mol of Mg(OH)₂. The yields of N_2H_4 under these conditions exhibit a clearly *linear dependence on* $p_{N_2}^2$ (Figure 9).

Discussion

Reduction of Substrates Other Than N₂. The present study demonstrates that $V(OH)_2$ behaves as a two-electron reductant even in reactions with substrates that can accept more than two electrons. At high partial pressures, acetylene is reduced exclusively to ethylene, in yields consistent with the stoichiometry of reaction eq 1.¹ At low partial pressures C_2H_2 is reduced to

a mixture of C_2H_4 and C_2H_6 owing to a secondary reaction of product C_2H_4 with the V(II) reductant. The side-on interaction of C_2H_2 with V²⁺ is supported by the observed exclusive reduction of butyne-2 to *cis*-butene-2,¹ and confirmed by the formation of *cis*- $C_2H_2D_2$ from C_2H_2 in D_2O , first demonstrated in the present paper.

Even with butadiene-1,3, only a two-electron reduction product, butene-1, is formed; the reaction is formulated in eq 2. The four-electron reduction product, n-butane, was not

observed, indicating that a concerted reduction of C_4H_6 at two adjacent V^{2+} centers is not favored.

The reaction of $V(OH)_2$ with alkyl halides may be plausibly

Figure 8. Evolution of H₂ from V(OH)₂-Mg(OH)₂ suspensions as a function of p_{N_2} and reaction time. Suspensions contained 40 μ mol of V(OH)₂ per 2000 μ mol of Mg(OH)₂.

Figure 9. Dependence of the yields of N_2H_4 on p_{N_2} . Reaction conditions as given in the legend to Figure 8. Solid line shows calculated dependence on $p_{N_2}^{2}$; insert is a plot of $[N_2H_4]^{1/2}$ vs. p_{N_2} , demonstrating the secondorder dependence of the yields of N_2H_4 on N_2 .

assumed to occur by way of a nucleophilic displacement of halide ion and organovanadium species undergoing further reaction in terms of reaction 3. The nucleophilic reactivity of

 $V(OH)_2$ must be considerable as relatively unreactive secondary and tertiary alkyl chlorides are dehalogenated at measurable rates (see Table I). A quantitative estimate of the

Figure 10. Sections of isomorphously V²⁺-substituted CdI₂-type layer structures of Mg(OH)₂ (Brucite) and of the phase "Mg(OH)_{1.3}-(OCH₃)_{0.7}", demonstrating the increase of the d_{001} interlayer distance as reported in ref 13. Note how the substitution of OH⁻ by CH₃O⁻ introduces hydrophobic regions in the interlayer spacings.

nucleophilic reactivity constant was not attempted since the rates in Table I are composite numbers and somewhat atypical for SN2 reactions.¹⁰ The reaction of $V(OH)_2$ -Mg(OH)₂ with *diazomethane* yielded methane and nitrogen and is formulated in eq 4. While diimide is not reduced by V²⁺ because of its

thermodynamic instability and short lifetime in solution, diazirine and dimethyldiazene are reduced; the reactions are exemplified in eq 5 for diazirine.

Hydrogen Evolution. The substrate-*independent* H_2 evolution from aqueous suspensions of $V(OH)_2$ may be assumed to occur via an intermediate vanadium hydride which could also be regarded as the Brønsted acid of the V^{2+} nucleophile. The reaction is formulated in eq 6. The rates of H_2 evolution from

 $V(OH)_2$ incorporated into $Mg(OH)_2$ are substantially slower, suggesting that the effective concentration of H_2O inside the $Mg(OH)_2$ lattice is lower than in the outside medium.

Reduction of Nitrogen. Role of the $Mg(OH)_2$ Host Lattice. The observed N_2 -stimulated evolution of H_2 from suspensions of $V(OH)_2$ in the absence of $Mg(OH)_2$ led us to propose that the $Mg(OH)_2$ host lattice provides an environment in which N_2H_2 , the first product of N_2 reduction, is protected against base-catalyzed decomposition into $N_2 + H_2$, which occurs rapidly whenever diimide is generated outside the host lattice in alkaline media.¹ An examination of the polymeric layer structure of $Mg(OH)_2$ (see Figure 10) reveals that the inside of the $Mg(OH)_2$ lattice may be regarded as a *buffered region* in which the effective concentration of OH^- is significantly lower than in the alkaline dispersion medium.¹¹ This also follows from the fact that $Mg(OH)_2$ may be precipitated from strongly alkaline aqueous solutions without significant occlusion of alkali hydroxide.

In spite of its apparent low affinity for foreign inorganic anions or cations, the $Mg(OH)_2$ lattice is readily penetrated by a wide variety of covalent molecules, including short-chain alkanes, alkenes, and alkynes. This permeability is enhanced if the $Mg(OH)_2$ is precipitated from solutions containing alcohols, which may be assumed to be incorporated in the manner shown in Figure 10. Thus, it is known that brucite reacts with CH₃OH on heating under pressure to produce mixed methoxy hydroxides among which a phase "Mg- $(OH)_{1.3}(OCH_3)_{0.7}$ " has been characterized.¹² This phase possesses a brucite-like CdI₂ layer structure in which the interlayer distance d_{001} is increased from 4.769 to about 8.0 Å. Such expansion of the interlayer distance could also occur in the $V(OH)_2$ -Mg(OH)₂ gels precipitated from aqueous-alcoholic media. It has the remarkable effect of introducing hydrophobic regions in the interlayer area besides rendering the lattice more permeable to covalent reactants. Accordingly, alkoxide-containing precipitates of $V(OH)_2$ -Mg(OH)₂ are expected to react with N2 more rapidly than those generated from purely aqueous media. However, the reactivity of the gels also depends on the structure of the alcoholic additives as will be discussed in the next section.

Effects of Additives. Figure 2 shows that the reduction of N_2 with aqueous alkaline suspensions of V(OH)₂-Mg(OH)₂ proceeds rapidly only during a brief phase of the reaction in which the gel remains in a state of enhanced permeability. Already after 30 s of reaction the rates of N_2H_4 and H_2 production drop to about $\frac{1}{30}$ of the initial rates. In the presence of CH₃OH, the $V(OH)_2$ -Mg(OH)₂ gels retain their initial high reactivity for significantly longer periods with attendant increases in the yields of both N_2H_4 and H_2 . Table II indicates how the yields of both products are influenced by a variety of other ogranic additives. It may be seen, for example, that the yields of N_2H_4 and of H_2 decline in the sequence $CH_3OH >$ $C_2H_5OH > n-C_3H_7OH > n-C_4H_9OH$, while the ratios of N_2H_4 : H_2 reach a maximum in the presence of C_2H_5OH . Compared to n-C₄H₉OH, i-C₄H₉OH produces more than twice the amount of H_2 , while $t-C_4H_9OH$ affords higher absolute yields of N_2H_4 at a slightly increased N_2H_4 :H₂ ratio. Cyclohexanol, however, causes a sharp drop of the amount of N_2H_4 produced and *increases* the H_2 production. With the exception of cyclohexanol, these aliphatic alcohols do not markedly affect C_2H_2 reduction. Although the yields of C_2H_4 are more than twice as high as those observed in pure aqueous systems of $V(OH)_2$ -Mg(OH)₂, all these alcohols cause approximately the same amount of stimulation. On the other hand, the inhibitory effect of cyclohexanol is observed for N_2 and C_2H_2 as the substrate. Obviously, some organic additives modify the structure of the host lattice to affect mainly the reactions involving N₂H₂, while other additives may be assumed to "clog up" the gels, an effect which can be noticed for N_2 and C_2H_2 as it prevents the access of substrates to the V²⁺ sites. Gel "clogging" is the more frequently observed and stronger phenomenon. This follows from a statistical correlation of the data shown in Table II. The yields of N_2H_4 from N_2 , and those of C_2H_4 from C_2H_2 , correlate directly, with r = 0.66(P = 0.001), where r is the calculated linear correlation coefficient. Gel "clogging" was also observed with one of the two detergents studied, i.e., with Triton X, which consists of a mixture of alkylphenoxypolyglycols. Its inhibitory effect may be related to that of propanediol-1,3. The other detergent, SDS (sodium dodecyl sulfate), is only a weak inhibitor, presumably because it is not incorporated (see Table II).

Inhibition by Alkanes. The observed inhibitory effects of short-chain alkanes in the reduction of N2 and C2H2 demonstrates that the V²⁺-doped Mg(OH)₂ possesses the properties of a molecular sieve. Whereas CH_4 and $n-C_4H_{10}$ inhibit N_2 reduction only slightly, C_2H_6 and C_3H_8 are strong inhibitors. Similar inhibitory effects of alkanes are also observed with C_2H_2 as the substrate. However, while short-chain hydrocarbons inhibit C₂H₂ reduction and H₂ evolution, N₂ reduction is inhibited by C_2H_6 with a concomitant stimulation of H_2 production. With C₃H₈, N₂ reduction and H₂ formation are both inhibited (see Figures 6 and 7). The anomalous effect of C_2H_6 on H_2 production as compared to C_3H_8 is interpreted as follows: C_2H_6 apparently can enter the Mg(OH)₂ lattice and lowers the effective concentration of N_2 . Accordingly, less N_2H_2 is generated and a greater proportion decomposes into the elements; the net result is enhanced, N_2 -dependent H_2 production. C₃H₈, in contrast, has a stronger "clogging" effect than C_2H_6 and prevents N_2 from reaching the V^{2+} sites. Hence, little N_2H_4 or H_2 is produced.

Effects of Ethanolamine and of Alkyldiamines. Ethylenediamine, diaminopropane-1,3, and ethanolamine belong to a special group of additives which cause a significant stimulation of the yields of N_2H_4 when added in optimal amounts to *reacting* V(OH)₂-Mg(OH)₂ gels with N₂ as the substrate. In the presence of these additives, the lowest relative yields of H₂ are produced (see Table II and Figures 3 and 4). These bases appear to protect N₂H₂ from base-induced decomposition into the elements. Hünig et al.¹³ reported that N₂H₂ generated from sulfonyl hydrazides similarly did not undergo base-catalyzed decomposition into N₂ and H₂ if *ethanolamine* rather than KOH was employed as the base in the reaction

$$RSO_2NHNH_2 \xrightarrow{+B} [NH=NH]$$
(7)
(B = ethanolamine)

With KOH as the base, decomposition of N_2H_2 into N_2 and H_2 was virtually quantitative.¹³ Our results show that ethanolamine and a number of alkylenediamines also protect N_2H_2 from decomposition in the V(OH)₂-Mg(OH)₂ system. It is noteworthy that these amines have no effect on C_2H_2 reduction and that they are most effective if employed *after* the gels were already generated. The alcoholic additives, in contrast, must be added to the reaction solutions *prior* to the precipitation of the gels to show their effects.

Effects of Inhibitors. The inhibition of N₂ reduction by CO is of interest as it is accompanied by a *stimulation* of H₂ production. Cyanide exhibits the same qualitative behavior, but acetylene inhibits N₂ reduction and lowers H₂ production. Carbon monoxide may be plausibly assumed to interact with the V²⁺ centers; at low partial pressures one coordination site will be blocked, preventing the side-on interaction of N₂ without interfering with H₂ evolution. At high partial pressures of CO, additional coordination sites on V²⁺ may become occupied, leading to inhibition of H₂ production, as indicated in Scheme III. The effects of cyanide are explained analogously. Scheme III is similar to one proposed in 1971, describing the Scheme III. Stimulation of H₂ Production by Carbon Monoxide

CO effect in molybdothiol model systems of nitrogenase.¹⁴

Mechanism of N2 Reduction. New Evidence for Diimide. The diimide mechanism of N₂ reduction by V(OH)₂-Mg(OH)₂ is supported by the observed accumulation of a reactive species in early phases of the reaction which subsequently disappears by way of a second-order reaction.¹ Further confirmatory evidence was provided by the observed N2-stimulated production of 1-propanol from allyl alcohol under the reaction conditions¹⁵ and the N_2 stimulation of H_2 formation from suspensions of $V(OH)_2$ in the absence of the Mg(OH)₂ host lattice.¹ The mechanism is now also supported by the observed dependence of the N₂H₄ yields on $p_{N_2}^2$ (see Figure 9), which essentially rules out any mechanism invoking the direct reduction of N2 to N_2H_4 . The fact that the reaction is so cleanly of second order in N₂ is probably fortuitous as some of the N₂H₂ decomposes into N₂ and H₂. However, deviations of the dependence of the yields of N₂H₄ on $p_{N_2}^2$ due to this reaction would be noticeable mainly at low partial pressures of N_2 . On the other hand, the dependence of the yields of H_2 on the partial pressure of N_2 as exemplified in Figure 8 illustrates the complexity of the system. The anomalous stimulation of H₂ production at low partial pressures of N2 is clearly indicative of N2H2 decomposition, which is favored over the disproportionation if it is generated in low initial or stationary concentrations; the same conclusion may be drawn from the data given in Table IV. The mechanism of N₂ reduction as formulated in eq 8 includes the

competing decomposition of N_2H_2 which is base catalyzed and which can be in part eliminated by the addition of N_2H_2 -stabilizing bases such as ethanolamine. Since $V(OH)_2-Mg(OH)_2$ reduces 2-butyne to *cis*-2-butene and, as we have now established, C_2H_2 in D_2O to *cis*-1,2- $C_2H_2D_2$, we postulate that *cis*- N_2H_2 is generated on hydrolysis of the reactive vanadium nitride intermediate.

The kinetic H-D isotope effect on diimide disproportionation (k_4 in eq 8) may be estimated from the data in Table III as approximately 2.25, and that of diimide decomposition as about 1.5, if the assumption is made that all of the H₂ or D₂ generated arises from the decomposition of diimide. The latter condition is probably best fulfilled during the early phases of the reaction. Since the kinetic H-D effects of reduction of C₂H₂, C₂H₄, or C₃H₆ are close to unity, we conclude that the hydrolysis of the vanadium-substrate complexes is not rate determining. The reduction of these organic substrates furthermore occurs even in the absence of the Mg(OH)₂ host lattice, as the olefinic or paraffinic reaction products are alkali stable. The requirement of a protecting host lattice in the reduction of N_2 by $V(OH)_2$ thus is in itself a proof for the intermediacy of diimide. In view of the similarity of the mechanism of N₂ reduction, the $V(OH)_2$ -Mg(OH)₂ system may hence be regarded as a stoichiometric analogue (but not as a model) of biological nitrogen fixation, wherein the V^{2+} centers simulate the reduced active molybdenum site and the $Mg(OH)_2$ host lattice the protective function of the apoprotein

Experimental Section

Reagents and Chemicals. All reagents and chemicals used that were commercially available were either of "analytical" or "reagent" grade purity and were used without further purification. Vanadium(II)-salt stock solutions were prepared by reducing solutions of vanadyl sulfate in 1 N HCl with metallic zinc as outlined in ref 1 and standardized by titration with standard Ce⁴⁺ solution. For the experiments in D₂O the V(II) solutions were prepared analogously in pure D_2O with careful avoidance of any contamination with protons or H2O, as will be outlined below.

Assays and Product Identification. Hydrazine was determined spectrophotometrically by the method of Watt and Chrisp¹⁶ as modified by us.¹ Hydrocarbons were measured by GLC, using a Varian Series 1200 Aerograph instrument equipped with a 6-ft Durapak phenyl isocyanate-Porasil, 80-100 mesh column. Identification of hydrocarbons was performed by measurements of retention times and coinjection of authentic compounds. In doubtful cases, mass spectrographic analysis was employed. H₂ was determined by GLC using a 6-ft column filled with molecular sieve (5 Å), at 27 °C.

Experimental Technique for Studies with Substrates Other Than Nitrogen. Aliquots of the V(II) stock solution, i.e., 0.10-0.15 mL, corresponding to about 40 µmol of V2+, 2 mL of CH₃OH, and 2 mL of aqueous 1 M MgSO₄ solution were injected into rubber-capped glass bottles of 38-mL capacity. These were previously flushed with pure argon or the reducible gaseous substrates, depending on the nature of the experiment. At t = 0, 7 mL of 8 N KOH was injected rapidly and the bottles were shaken to assure rapid homogenization of the reaction mixture and uniform metal-hydroxide-gel formation. At various time points, gas samples were withdrawn and analyzed for hydrocarbon products or H2 as described above. In the experiments with liquid substrates, these were as a rule injected in amounts of 570 μ mol (a convenient amount for the scale of most experiments) prior to the addition of the 8 N KOH solution. Where gaseous substrates (e.g., alkyl halides) had to be added, 12.7 cm³ of the respective gases at 1 atm was injected into the bottles by means of a syringe. To spot leaks the bottles were immersed into water-filled beakers and the gas injections were performed under water. This simple procedure facilitated the detection of any leakage.

Nitrogen Reduction Experiments. Typical experiments were performed as outlined above for gaseous substrates except that the glass bottles of 38-mL capacity were first filled with pure N₂ at 1 atm. After addition of the V(II) salt solution, MgSO₄, and CH₃OH, the hydroxide gels were generated by the injection of 7 mL of 8 N KOH at room temperature. After specified times the solutions were analyzed for N_2H_4 (and occasionally also for NH_3) by centrifuging the reaction suspension followed by careful acidification of the supernatant with 6 N HCl in the predetermined amount to bring the terminal pH to 1. The acidified solutions were diluted to a volume of 25 mL. Hydrazine was determined colorimetrically with p-dimethylaminobenzaldehyde reagent,¹⁶ and ammonia (for control purposes). by the method of Kruse and Mellon,17

Experiments in D₂O. Deuterium oxide of 99.5% isotopic purity was purchased from Strohler Isotopes Inc. The V(II) salt solution was prepared by reducing solutions of anhydrous VCl₃ with dried mossy zinc in 1 D_2O . The DCl required for this purpose was generated by reacting SOCl₂ with D₂O. The SO₂ was removed by purging the resulting solutions with pure, dried argon, followed by brief evacuation. Solutions of NaOD, 8 N in D₂O, were prepared by dissolving the calculated amounts of metallic sodium in D₂O under argon. They were standardized by titration with 1 N HCl and, where necessary, diluted to the same normality as the corresponding solution of NaOH in H₂O. Methanol-O-d was purchased from Aldrich at 99.5% purity. In order to assure comparable reaction conditions, all experiments in D₂O were performed together with controls in H₂O under the same conditions.

Effects of Additives. Studies of the effects of alcohol additives on the efficiency of N₂ reduction were performed under the standard reaction conditions described above, i.e., the alcohols were added to the reaction solutions prior to gel formation. Ethanolamine and the other amines tested were added after the gels had been formed or as indicated in the legends to Figures 3 and 4 or Table II.

Miscellaneous Experiments. The experiments with gaseous inhibitors are straightforward and were performed under the same conditions as those with the gaseous substrates. Inhibition of substrate reduction by CN⁻ involved the injection of freshly prepared 2 M solutions of NaCN after the gels had been generated (this is essential as CN^{-} forms complexes with V(II) which cannot be incorporated into the $Mg(OH)_2$ lattice). The reduction of CN^- to NH_3 and $CH_2=O$ was demonstrated by determining NH₃ colorimetrically in distillates of reaction centrifugates; CH2=O was detected qualitatively in the undistilled supernatants with chromotropic acid-H₂SO₄.¹⁸ Control assays in solutions of NaCN in the absence of V(II) were performed which were negative for CH2=O; traces of NH3 were detected in the distillates but at significantly lower concentrations than in the runs with V(II) present. Diazomethane was generated from Diazald according to Boer and Backer¹⁹ except that the required KOH solution was replaced by 8 N NaOH. Using 0.2 g of Diazald and 10 mL of 8 N NaOH, to which 3 cm³ of CH₃OH and 3 cm³ of diethyl ether were added, the resulting biphasic solution of diazomethane and NaOH could be used directly for the production of the $V(OH)_2-Mg(OH)_2$ gels in place of the 8 N NaOH solution employed in the other experiments. Dimethyldiazene, CH₃N=NCH₃, was prepared²⁰ from sdimethylhydrazine by oxidation with freshly precipitated HgO; diazirine was synthesized as described in the literature;²¹ the respective reduction experiments were performed by injecting methanolic solutions of the compound to $V(OH)_2$ -Mg(OH)₂ suspensions (this substrate must not be added to acidic V(II) solutions as it is also reduced under these conditions). Diaziridine was identified by GLC and mass spectroscopy. s-Dimethylhydrazine was detected by UV spectroscopy after reoxidation to dimethyldiazene with HgO. In the reduction of diaziridine, formaldehyde was detected by means of chromotropic acid-H2SO4, and ammonia according to Kruse and Mellon,¹⁷ in distillates of the reaction centrifugates.

Determination of the Stereochemical Course of C2H2 Reduction in **D₂O.** The reduction of C_2H_2 by $V(OD)_2$ -Mg(OD)₂ was scaled up to obtain sufficiently high yields of product C₂H₂D₂. A VCl₂ solution in 1 mL of 4 N DCl, corresponding to 200 mol of $\rm V^{2+}$ and 10 mL of a 1 M MgSO₄ solution in D₂O, was injected into a rubber serumcapped, C₂H₂-filled (1 atm) glass bottle of 160-mL capacity. The reduction was initiated by the injection of 5 mL of 1 M NaOD. (The lower base concentration was chosen to suppress the base-catalyzed exchange of acetylenic protons.) After 30 min of reaction, the gaseous contents of the reaction bottle were transferred into an evacuated IR gas cell. The region between 1000 and 800 cm⁻¹ was recorded and revealed a sharp band at 842.1 cm⁻¹, characteristic of ω_7 , a nonplanar vibrational mode of cis-1,2-C₂H₂D₂.²² No band or shoulder was observed in the region of 987-990 cm⁻¹ where ω_4 , a characteristic frequency of trans- $C_2H_2D_2$, would have been expected.²²

Acknowledgments. This work was supported by Grant CHE76-10890 from the National Science Foundation. We thank Mr. Keith Pince for skillful experimental assistance.

References and Notes

- S. I. Zones, T. M. Vickrey, J. G. Palmer, and G. N. Schrauzer, J. Am. Chem. (1)Soc., 98, 7289 (1976).
- N. T. Denisov, O. N. Efimov, N. I. Shuvalova, A. K. Shilova, and A. E. Shilov. Zh. Fiz. Khim., 44, 2694 (1970): also see A. E. Shilov et al., Nature (London), 231, 460 (1971).
- (3) N. T. Denisov, N. I. Shuvalova, and A. E. Shilov, Kinet. Katal., 14, 1325 (1973).
- (4) The arguments against a possible two-electron reduction of N_2 to N_2H_2 in water were based on a consideration of the estimated reduction potential of N₂H₂ of -1.1 V.⁵ It was stated that reducing agents "having reduction potentials much higher than that of molecular hydrogen cannot exist in water, since they must react with the latter to form molecular hydrogen. . Therefore, one- or two-electron reduction of nitrogen in aqueous solution with the intermediate formation of N2H2 is virtually impossible However, this discussion, ignores the existence of *metastable* reductants of high reduction potentials; V(OH)₂ is one such reductant. A. E. Shilov, *Usp. Khim.*, **43**, 378 (1974).
- G. N. Schrauzer, Angew. Chem., 87, 579 (1975): Angew. Chem., Int. Ed. (6) Engl., 14, 514 (1975).
- (7) N. T. Denlsov, Kinet. Katal., 17, 1044 (1976).

- (8) Kh.-M. A. Brikenstein, N. T. Denisov, O. N. Efimov, G. V. Nikolaeva, A. K. Shilova. and N. I. Shuvalova, Kinet. Katal., 17, 634 (1976).
- (9) N. T. Denisov, E. I. Rudshtein, N. I. Shuvalova, and A. E. Shllov, Dokl. Akad. Nauk SSSR. 202, 623 (1972).
- (10) This is mainly because solvolysis reactions of the alkyl halldes occur under the reaction conditions and differences in the solubilities of the compounds would have to be considered for quantitative comparisons.
- (11) This property of Mg(OH)₂ can be strikingly demonstrated by exposing the iodine-inclusion complex of Mg(OH)2 to alkali. Whereas I2 undergoes base-induced disproportionation noticeably already at pH 8.5. the $Mg(OH)_2-I_2$ inclusion complex can be suspended in solutions of pH 10 without losing its dark brown color.
- T. Kubo, K. Uchida. K. Tsubosaki, and F. Hashimi: Kogyo Kagaku Zasshi, 73, 75 (1970).
 S. Hünlg. H. R. Müller, and W. Thier, Angew. Chem., 77, 368 (1965); Angew.
- Chem., Int. Ed. Engl., 4, 271 (1965).

- (14) G. N. Schrauzer and P. A. Doemeny, J. Am. Chem. Soc.. 93, 1608 (1971).
- (15) This crucial experiment, first reported in ref 1, has been fully reproduced. Care must be taken in experiments with ally alcohol to keep the substrate concentrations high. A reduction of allyl alcohol by $V(OH)_2$ to propylene has also been observed. See S. I. Zones. Thesis. University of California. San Diego, 1978.
- (16) G. W. Watt and J. D. Chrisp. Anal. Chem., 24, 2006 (1952).
- (17) J. C. Kruse and M. G. Mellon. J. Water Pollut. Control Fed., 24, 1098
- (17) S. C. Krubs and M. G. Melloli, J. Water Fond. Combol Four. 24, 1030 (1952).
 (18) C. E. Bricker and W. A. Vail. Anal. Chem.. 22, 720 (1950).
 (19) T. J. Boer and H. J. Backer, "Organic Syntheses", Collect. Vol. IV. Wiley. New York, N.Y., 1963, p 250.
 (20) R. Renard and L. C. Leitch. Can. J. Chem.. 32, 545 (1954).
 (21) E. Schmitz and R. Ohme. Chem. Ber., 95, 795 (1962).
 (22) R. L. Arnett and B. L. Crawford, Jr., J. Chem. Phys., 18, 118 (1950).

Molecules with T Symmetry. Conformational Analysis of Systems of Type $M[C(CH_3)_3]_4$ and $M[Si(CH_3)_3]_4$ by the Empirical Force Field Method

Linda D. Iroff and Kurt Mislow*

Contribution from the Department of Chemistry, Princeton University, Princeton. New Jersey 08540. Received July 18, 1977

Abstract: Empirical force field calculations have shown that compounds of the type $M[C(CH_3)_3]_4$ and $M[Si(CH_3)_3]_4$, where M is an element of group 4A, exist in at least two conformational states: a ground state with T symmetry, and a higher energy conformer with S_4 symmetry. In addition, a C_2 form has been found for $C[C(CH_3)_3]_4$ (2). The energy gap between the T and S_4 forms increases with a decrease in the central M-C or M-Si bond length, and reaches a maximum of 16 kcal/mol for the most strained member of the series, 2.

The symmetry of every molecule-properly speaking, of every molecular model-under the rigid body approximation may be described by some point group, and that of a chiral molecule by one of five: C_n , D_n , T, O, and I. Curiously, whereas molecules with C_n or D_n symmetry are commonplace,¹ chemical representatives of the remaining three groups are generally considered to be unknown.² This state of affairs is rendered the more remarkable by the fact that T, O, and I are the pure rotation groups of the well-represented achiral tetrahedral $(T_d \text{ and } T_h)$,⁴ octahedral (O_h) ,⁵ and icosahedral $(I_h)^6$ groups, respectively.

Chemical structures belonging to one of these chiral groups are readily envisaged: it is merely necessary to combine an achiral skeleton of the appropriate symmetry with a set of ligands which preserves all symmetry elements of the first kind while destroying all those of the second.⁷ This principle underlies the elaborate design of various hypothetical molecules with $T^{1,8}$ and O^9 symmetry.¹⁰ Over 30 years ago, Herzberg,¹¹ applying the same principle, pointed out that Tsymmetry is exhibited by any conformation of neopentane, $C(CH_3)_4$, in which each methyl group is twisted in the same sense and to the same extent $(0 < \phi < \pi/3)$ relative to a T_d conformation ($\phi = 0$ or $\pi/3$).¹² The present paper is devoted to a fuller exploration of Herzberg's appealingly simple idea by an examination of conformational preferences in molecules of the type MR_4 , where M is an element of group 4A and R = $C(CH_3)_3$ or $Si(CH_3)_3$.

Symmetry and Time Scale. Central to the definition of molecular symmetry is the time scale of measurement to which the symmetry refers. In discussing nonrigid molecules which can undergo internal torsional motion, such as neopentane and molecules of the type MR₄, it is therefore essential to specify the particular model of the molecule which is appropriate to the conditions of measurement. The symmetry label attached to that model is then a fair expression of "molecular symmetry" under the stated conditions.¹³

For nonrigid molecules the appropriate group is the Longuet-Higgins molecular symmetry (MS) group,14 which may be conveniently expressed as the semidirect product of the torsional subgroup of the ligands and the frame subgroup of the skeleton.¹⁵ In the context of the present discussion, it is instructive to examine the case of a molecule of the type CR*4, where R* is an asymmetric ligand and all four ligands have the same absolute configuration.¹⁶ The highest point group symmetry possible for such a molecule is D_2 ,¹ and all conformations of $CR*_4$ must therefore belong to D_2 or to one of its subsymmetries (i.e., C_2 or C_1). However, we might be dealing with a nonrigid molecule, and the appropriate symmetry group in that case is the MS group, with feasible transformations corresponding to the internal motions of the molecule. The molecular symmetry group is therefore $(C_1)^4 \wedge T$, a group of order 12 which is isomorphic to T. In other words, the symmetry of time-averaged CR*4 is permutationally equivalent to T.¹⁷

Similarly, seen as a rigid structure, neopentane has T_d symmetry in the ground state.¹⁸ On the other hand, viewed as a structure in which internal rotations of the methyl groups are time averaged, the molecular symmetry group of neopentane¹⁵ is $(C_3)^4 \wedge T_d$, of order 1944. Evidently, Herzberg's T symmetry for neopentane refers to a molecule frozen into a conformation which is unstable relative to the T_d ground state.

Static and Dynamic Symmetry of Tetrakis(trimethylsilyl)silane (1). In 1970 an electron diffraction study by Bartell et al.¹⁹ showed that $Si[Si(CH_3)_3]_4$ (1), a silicon analogue of the unknown $C[C(CH_3)_3]_4$, exhibits T symmetry in the gas phase. Bartell et al. suggested that the deformation from T_d symmetry